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ABSTRACT 
 

  This study analytically specifies the residual cash flow stream that real 
capital embodies.  The specification separates debt cash flows from equity 
and obtains an equilibrium condition equating marginal physical product 
and real user cost of capital.  Analysis of the user cost specification 
reveals that the equilibrium interest rate is an increasing function of the 
debt contract's loan-to-value ratio and average period of debt.  The basic 
reason why the interest rate increases with average period is this: the 
equity financing rate exceeds the interest rate, a lengthening debt average 
period reduces to equity the discounted cost of debt, the financing rate 
increases to re-establish equilibrium.  The “embodied equity” hypothesis 
advanced herein joins the expectations hypothesis, the liquidity preference 
hypothesis, and the market segmentation hypothesis as a fundamental 
explanation for the upward slope on the yield curve. 
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The “Embodied Equity” Theory of Term Structure 
 

I.  Introduction 

 Theories from early economics explain interest by attaching expected income streams to 

real capital.  Eugen von Böhm-Bawerk hypothesizes in Positive Theory of Capital (1888) that 

the value of real capital embodies the expected capital income stream.  Capital releases 

interest as time passes, according to Böhm-Bawerk.  One of his novel and enduring 

contributions is recognition that the first cash flow contains information about the entire cash 

flow stream.  He refers to the first cash flow as “bearer of the use.”  John Keynes in General 

Theory of Employment, Interest, and Money (1936) explains that the first cash flow, re-coined 

the “user cost of capital,” directs producer incentives because value marginal product 

equilibrates to user cost of capital.  A second contribution of Böhm-Bawerk’s theory is that the 

temporal length of the capital income stream is important to determination of the interest rate.  

He refers to the stream’s temporal length as “average period.”  John Hicks in Value and 

Capital (1939) hypothesizes that fluctuation in average periods of capital income streams 

explains variation in interest rates. 

 My study employs average period and user cost in an analytical model and finds a new 

answer for an old question:  Why does the yield curve usually slope upward?  Existing 

hypothetical answers to this question fall into four basic categories.  (1) The unbiased 

expectations hypothesis asserts that the yield curve is shaped by market forces equating 

implied forward rates to expected spot rates.  (2) The liquidity preference hypothesis explains 

that long-term debt contracts offer investors fewer reinvestment options than short-term 

contracts and, all else equal, long-term yields are higher in order to induce investment.  (3) 

The preferred habitat hypothesis, also called the modified market segmentation hypothesis, 
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suggests that for institutional reasons investors prefer one term to another, bonds of differing 

term are not good substitutes for one another, and yields adjust to supply and demand 

conditions in various market segments.  (4) Stochastic interest rate hypotheses show that 

uncertainty about possible outcomes generally increases with term; risk premia are a direct 

function of uncertainty and consequently they too increase with term.1 

 The preceding hypotheses are not mutually exclusive.  Each presents a fundamental 

explanation for the upward slope on the yield curve.  When real capital embodies the 

expected capital income stream, however, there exists an additional fundamental 

explanation.  Gist of the explanation is this: equity is residual claimant on the embodied 

capital income stream; the equity financing rate exceeds the interest rate on debt; an 

increase in average period of the debt payment stream reduces to equity the discounted cost 

of debt; user cost of capital is invariant to leverage so something must offset reduction in the 

discounted cost of debt; the interest rate consistent with equilibrium rises.  Capital naturally 

releases embodied interest at a higher rate when average period of debt is long, so long-term 

interest rates naturally are higher than short-term rates. 

 A necessary condition for this term structure hypothesis is that the equity financing rate 

exceeds the debt interest rate.  Justification for the condition is easily found.  First, debt 

claims are senior to equity claims.  Second, cash flows are more fully specified, and hence 

less risky, for debt than for equity.  An alternative reason, however, is more parsimonious 

with this fundamental model of real capital.  A specific unit of real capital embodies the 

unlevered equity financing rate.  Sources of debt financing, however, hold claims on many 

types of real capital for many different producers.  Creditors are beneficiaries of diversification 

 
1  Vasicek (1977) as well as Cox, Ingersoll, and Ross (1981,1985) introduce uncertainty into the term structure 
literature through with intertemporal, continuous time, stochastic processes.  More recent and general models of 
stochastic interest rates include Longstaff and Schwartz (1992) and Constantinides (1992). 
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benefits because they hold portfolios with many types of real capital.  The existence of 

diversification benefits for creditors is assurance that the interest rate on debt is less than the 

unlevered equity financing rate, and invariance of capital’s user cost to financial structure is 

assurance that the equilibrium interest rate is greater for long-term than for short-term debt. 

 The layout for this study is as follows.  Section II specifies the equilibrium condition for the 

marginal investment in real capital.  This specification includes information about the maturity 

structure of the debt payment stream.  The invariance of the user cost to financing method 

enables derivation of an expression that endogenizes the interest rate.  Sections III and IV 

provide insight about the “intrinsic yield curve” that capital embodies.  Section III focuses on 

the nature of the debt payment stream, for example whether the loan is a debenture or fixed 

payment amortized loan.  Section IV focuses on the importance of real capital characteristics, 

for example whether the economic depreciation is accelerated or decelerated.  A brief 

conclusion in Section V closes the study. 

 The findings are relevant for several reasons.  First, the model enables the point 

estimation of the intrinsic interest rate yield curve.  Analysis of this specification reveals, for 

example, that the intrinsic yield curve is steeper for corporate debentures than for fixed 

payment amortized loans.  Second, the framework incorporates information about debt 

maturity structure into the equilibrium conditions for the user cost of capital.  This expands the 

scope of analyses in which the user cost is applicable and allows for potential reduction in 

measurement error.  Third, the study offers a new yet fundamental explanation for the 

upward sloping yield curve. 
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II.  The generalized user cost specification 

 The user cost equals the pre-tax cash flow produced by one unit of real capital during its 

first period of use such that the asset represents a zero net present value investment.2  

Jorgenson (1963) gives the user cost a modern analytical framework.  He links user cost to 

financing rates and tax policy parameters and subsequently employs user cost as an 

explanatory variable for net fixed investment. 

 Robert Hall and Jorgenson (1967) obtain a specification for the user cost at time s, 

denoted cs: 

(1) 
   

 s

sssss
s τ1

Zτ-1πδrq
c




  

In this expression, qs represents the supply price at time s of a new capital asset, r is the 

financing rate for the investment,  is the asset's rate of decline in productive efficiency,  is 

the expected inflation rate, τ is the marginal corporate income tax rate, and Z is the present 

value of tax depreciation deductions (per dollar of asset) expected throughout the service 

life.3 

 Interpretations about the financing rate in the user cost framework vary.  Early studies 

employing the user cost [e.g., Jorgenson (1963)] measure r as the long-term government 

bond rate.  Hall (1981) argues that the short-term bond rate is appropriate.  Martin Feldstein 

(1982) argues that these specifications ignore the cost of equity financing.  He suggests the 

user cost should employ a measure for r equal to the weighted average of debt and equity 

financing rates.  Although Jorgenson and Kun-Young Yun (1991) rely on pre-tax financing 

 
2 Equivalent restatements of the user cost definition include (all are per unit of real capital): (a) earnings before 
interest and taxes plus depreciation; (b) operating income plus depreciation; (c) cash flow from operations plus 
taxes and interest. 
3 The Hall-Jorgenson user cost specification includes the effect of an investment tax credit at rate v.  Incorporate 
v into the specifications herein by replacing (1 – τZ) with (1 – τZ – v). 
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rates, most recent studies employ a weighted average of after-corporate-tax debt and equity 

financing rates, as in 

(2) sssss iατ)(1)ρα(1r   , 

where  is the marginal debt-to-assets ratio,  is the levered equity financing rate, and i is the 

pre-tax debt interest rate.  Equation 2 specifies r as the ubiquitous weighted average cost of 

capital.  The financial cost of capital from equation 2, r, substitutes into the Hall-Jorgenson 

user cost of capital in equation 1 in order to derive the investment equilibrium condition for 

real capital goods. 

 The objective for the producer is maximization of discounted profits.  Jorgenson (1967) 

shows that the equilibrium conditions equate the value marginal products of labor and capital, 

respectively, to the wage rate and user cost of capital.  Alternative yet equivalent description 

of the equilibrating process is that the producer invests in capital whenever (a) the value 

marginal product of capital exceeds the user cost of capital, or (b) the internal rate of return 

for the after-corporate-tax (before interest) cash flow stream (also known as the Keynesian 

marginal efficiency of capital) exceeds the weighted average cost of capital.  With each 

additional capital investment the marginal physical product of capital declines, thereby 

reducing the value marginal product and marginal efficiency of capital.  Equilibrium eventually 

recurs when inequalities (a) and (b) are offset. 

 The Hall-Jorgenson user cost specification has appeared for decades in economic 

analyses pursuing many different objectives.  A significant strand of literature manipulates the 

user cost framework so that instead of solving for the equilibrium pre-tax cash flow as the 

unknown variable, some other variable or expression from the user cost specification serves 

as the unknown term.  Patric Hendershott (1981) endogenizes the financing rate within the 
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user cost framework and makes inferences about changes in risk premia and possible 

valuation effects of inflation.  Alan Auerbach and Jorgenson (1980) invoke the assumption 

that risk-adjusted after-tax returns on financial and fixed assets equilibrate.  They 

subsequently extract from the user cost framework the internal rate of return for the fixed 

asset's pre-tax cash flow stream and ingenuously glean insight about effective tax rates for 

fixed assets [other prominent studies on effective tax rates and user cost include David 

Bradford (1981), Jane Gravelle (1982), and Mervyn King and Don Fullerton (1984)].  Other 

studies rely on the user cost framework to infer the equilibrium financial cost of capital (r) for 

fixed assets in different sectors or asset groups [see, for example, Auerbach (1987), Hans-

Werner Sinn (1991), and Jorgenson and Ralph Landau (1993)]. 

 Specification of financial structure in the preceding studies is limited.  They assume 

explicitly, if anything, that for a firm financing by debt and equity the underlying debt-to-equity 

ratio is perpetually constant.  The implications of this assumption are neither investigated nor 

relaxed by any of the studies.  The model below generalizes the specification by explicitly 

separating debt from equity. 

 Suppose that for purchasing a new fixed asset at time s with supply price qs the economic 

producer supplies equity financing of (1-s )qs and obtains debt financing for sqs.  A loan 

payment schedule at time of investment establishes repayment of principal and interest.  

Each period the asset cash flow net of taxes and loan payment accrues to equity; call the 

expected accrual the residual cash flow.  The zero net present value equilibrium condition 

equates funds provided by equity to the present value of the expected residual cash flow 

stream discounted by the equity financing rate: 

(3)  


 

1t ts,
t

sts,s
t

sts,
t

ssss B)ρ(1zτq)ρ(1τ)c-(1)πρ(1)qα(1  . 
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s is the initial loan-to-value ratio for the time s marginal investment in real assets.  The 

evolution beyond time s of the asset's loan-to-value ratio depends on the interaction between 

the asset cash flow and loan payment streams. 

 Equation 3 is the equilibrium condition for a two-market model: (1) the market for real 

assets, and (2) the equity market.  According to Walras Law, either none or both markets are 

in a state of equilibrium.  The incentive for equity to invest in real assets persists until 

equation 3 is satisfied. 

 The discounted residual cash flow on the right-hand-side of equation 3 has three 

components.  The first component, (1-τ)cs,t , equals the after-corporate-tax real asset cash 

flow expected at time s+t from the time s investment.  The second component, τqszs,t, equals 

expected tax savings from depreciation deductions at time s+t resulting from the time s 

investment.  The third component, Bs,t, equals the after-corporate-tax loan payment made at 

time s+t for the time s investment.  Bs,t may include interest, principal repayment or issuance, 

and any other debt related fees.  Further details about cash flow components appear below. 

 First consider specification of the real asset cash flow stream.  Let dj denote the 

proportional decline in real asset cash flow that occurs after the j'th asset cash flow is 

received (d0 = 0).  The series dj for j = 0,..., is the asset's capacity depreciation schedule.4  

The capacity depreciation schedule specifies the asset’s incremental contribution to potential 

production at every point in the useful service life.  Typically, capacity depreciation is 

assumed exogenous and independent of utilization rates or maintenance expenditures.5  For 

 
4 Depreciation and capital stock definitions herein follow the terminology of the U.S. Bureau of Labor Statistics 
(1979) and U.S. Bureau of Economic Analysis (1987). 
5 Two of the few models which assume depreciation is endogenous and depends upon utilization rates and 
maintenance expenditures as choice variables are Larry Epstein and Michael Denny (1980) and Moshe Kim and 
Giora Moore (1988). 
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example, with straight-line capacity depreciation over a ten-year service life dj = 1/10 for j = 

1,...,10 and dj = 0 otherwise.  The expected real asset cash flow accruing at time s+t from the 

investment made at time s is 

(4)    
t

1j 1jsts, d1cc . 

cs is the time s user cost of capital and equals the asset cash flow produced by one unit of 

new real assets during first period of use (cs is identical to cs,1). 

 Second consider specification of the loan payment stream.  Let γ denote the loan 

payment (interest, principal, and fees) to be paid at the end of the asset's first period of use, 

where γ is expressed as a proportion of the asset's supply price: 

(5) ss,1s /qBγ  . 

The loan payment stream is summarized by the series bj for j = 0,..., , where bj denotes the 

change in cash flow (as a proportion of Bs,1) that occurs after the j'th payment is made (b0 = 

0).  More precisely, 

(6) .)/BB(Bb s,11js,js,j   

Equations 5 and 6 specify the entire loan payment stream, regardless of whether the debt 

contract represents a consol, a fixed payment amortized loan, a debenture with a balloon 

payment, or any other debt maturity structure.6  The payment at time s+t attributable to the 

loan issued to finance the time s investment is given by 

(7)    
t

1j 1jssts, b1 qγB . 

 
6 If the loan payment during the first period is zero, γ may be redefined; for example, with zero coupon debt of 
term T, γs = Bs,T qs

-1. 
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 Obtain the zero net present value equilibrium with explicit specification of the asset cash 

flow and loan payment streams by substituting equations 4 and 7 into 3: 

(8) 

 

  b1γq)ρ(1-  

τzq)ρ(1

d1τ)c-(1)πρ(1)qα(1

1t

t

1j 1jss
t

s

1t ts,s
t

s

1t

t

1j 1js
t

ssss

 



 



  









  








 

Equation 8 shows an equilibrium condition in which funds provided by equity equal the 

expected present value of the after-tax asset cash flow stream, plus the expected present 

value of tax savings from depreciation deductions, minus the present value of the loan 

payment stream, each discounted by the levered equity financing rate.7 

 Obtain the generalized user cost specification by simplifying and rearranging the 

equilibrium condition in equation 8: 

(9) 
   

   ss

ssssss
s Δ1τ1

ΛZτ1πρq
c




  . 

The two new variables in equation 9, Λ and Δ, generalize intertemporal dynamics of financial 

structure and capacity depreciation, respectively.8  Subsections below explore these two 

variables.  First, however, glean general insights about user cost. 

 The user cost of capital, c, equals the immediate pre-tax cash flow an asset produces 

such that the net present value of the residual cash flow stream is zero.  The user cost is 

found by specifying everything known or expected about the future.  Conditioned on 

 
7 Stewart Myers (1974) discusses a capital budgeting framework similar to the one above, in that the discounted 
value of asset cash flows is computed and subsequently the discounted value of financing costs is subtracted. 
8 Thomas Downs (1988) presents a user cost specification that generalizes capacity depreciation.  That 
specification does not explicitly model financial structure. 



 10 

expectations, then, static trade-offs exist among the user cost components.  Alternative 

scenarios below highlight component roles. 

 Suppose for a one dollar asset (q = $1) that taxes, inflation, and leverage are nil (τ = 0, π 

= 0, and Λ = 0), and the real asset perpetually retains the same productive capacity as when 

new (Δ = 0).  For this scenario, c = ρ implying that the user cost of capital equals the financial 

cost of capital.  The only capital cost for this scenario is financing cost, so the real asset that 

generates a pre-tax cash flow equal to the equity financing rate (ρ) has a zero net present 

value. 

 Consider now a scenario in which inflation is positive (π > 0, τ =Λ=Δ= 0, and q = $1).  The 

user cost of capital equals the real equity financing rate, ρ–π.   The user cost is less with 

inflation than without because a capital gain accrues to the real asset.  For this scenario, the 

only capital cost still is financing cost but pre-tax cash flow of ρ–π plus capital gain of π sum 

to the equity financing rate and net present value is zero. 

 Introduce capacity depreciation (0<Δ< 1, τ =Λ=π= 0, and q = $1).  The user cost of capital 

equals ρ/(1–Δ).  An increasing depreciation rate raises Δ and increases the equilibrium user 

cost of capital.  The most rapid depreciation occurs with the one period model in which real 

capital delivers one return and expires.  For this scenario, as the subsequent subsection 

explains, Δ=1/(1+ ρ) and c = 1+ ρ.  Pre-tax cash flow consistent with zero net present value 

equals the supply price of capital plus the equity financing rate. 

 Finally, and most importantly, consider the effect of debt and taxes on the user cost.  The 

term (1–τZ–Λ) from the generalized specification embodies benefits to equity of leverage and 

tax shields.  The allowance of tax depreciation deductions reduces the equilibrium user cost 

by the amount of discounted tax savings (τZ).  The user cost is lower for this scenario 
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because the constant supply price equals the discounted value of after-tax cash flows, 

depreciation deductions shield cash flows from taxes and, in a Keynesian static equilibrium, 

pre-tax cash flow adjusts downward.  Equilibrium pre-tax cash flow is less with tax benefits 

than without because the asset supply price capitalizes tax benefits.9  Tax benefits descend 

like manna from heaven – they represent wealth creation. 

 Λ also embodies benefits pertinent to wealth creation.  Debt financing, if all else were 

equal, increases Λ and reduces the equilibrium user cost because the debt interest rate is 

less than the equity financing rate.  Deferral into the remote future of principal repayment 

reduces for equity the discounted cost of debt.  The leverage benefit for equity increases as 

the average period of the loan payment stream increases. 

 The term (1–τZ–Λ) measures for equity the reduction in capital costs from leverage and 

tax shields.  The tax benefits descend from a government that the model leaves unspecified.  

Perhaps future research may introduce into this model an equilibrium condition on 

government and taxes, but to-date that relation remains unconstrained.  The leverage benefit 

to equity is constrained, however, due to the irrelevance of financial structure to equilibrium 

user cost.  Section III introduces an equilibrium condition on the debt market and explains 

trade-offs between financial structure and financing rates.  Before going there, though, further 

explore Δ and Λ. 

A.  Capacity depreciation:  Δ 

 Obtain Δs by discounting the capacity depreciation schedule with the real levered equity 

financing rate: 

(10) 




1t t
t

sss d)π-ρ(1Δ  . 

 
9 Austan Goolsbee (1997) examines whether one dollar of investment tax benefits flows to the capital goods 
investor or supplier. 
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 To focus on capacity depreciation suppose that equity is the only financing source.  Thus, 

Λ= 0 and r = ρ.  The generalized user cost specification from equation 9 reduces to equation 

1 by restricting capacity depreciation to an infinite geometric time-path.  This restriction 

implies dt= (1-) t-1 for every t>0.  Subsequent simplification of equation 10 shows that for 

this special case 

(11) 1
sss )πδ(ρδΔ   

Substitute equation 11 into 9 and obtain equation 1.  The Hall-Jorgenson user cost 

specification assumes productive capacity depreciates along an infinite geometric time-

path.10  Equation 9 accommodates, however, any time-path of capacity depreciation. 

B.  Financial structure:  Λ 

 Obtain Λs by discounting the loan payment schedule: 

(12) )λ(1ργαΛ s
1

ssss    , where 

(13) 




1t t
t

ss b)ρ(1λ  . 

The generalized user cost specification from equation 9 reduces to the Hall-Jorgenson 

specification in two special cases. 

 The first special case is the one period model.  The following sequence of events occurs:  

(1) At time s investment at price q occurs with equity and debt financing equal to (1-α)q and 

αq, respectively;  (2)  At time s+1 the asset delivers pre-tax cash flow equal to the user cost, 

the loan is fully repaid with an after-tax debt payment of αq(1 + (1-τ)i ), the residual accrues to 

equity, and the asset expires.  No other cash flows attach to the time s capital investment. 

 
10 Feldstein and Michael Rothschild (1973) vehemently criticize the Jorgenson investment model because, in 
addition to the explicit assumption of geometric capacity depreciation, there is an implicit assumption that real 
capital investment grows along a geometric time-path. 
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 Parameterize the one period model with these settings:  d1 = 1 and dt = 0 otherwise;  b1 = 

1 and bt = 0 otherwise; and γ = α(1 + (1-τ)i ).  Solution of equations 10 and 12 shows, 

respectively, that Δ = (1+ρ-π) -1 and Λ = α[ρ – (1-τ)i](1+ρ) -1 .  Substitute Δs and Λs into 

equation 9, simplify, and obtain the Hall-Jorgenson user cost (equation 1) containing the 

weighted average cost of capital (equation 2).11 

 The second special case occurs when, for the marginal capital investment, the periodic 

loan payment equals an amount that holds the loan-to-value ratio perpetually constant.  This 

scenario parameterizes easily with geometric capacity depreciation.  Thus, dt = δ(1-δ) t-1 .   

The first loan payment, Bs,1, is comprised of interest and principal equal to αq(1-τ)i and αq(δ-

π), respectively, implying that γ = α[(1-τ)i+δ-π ].  Loan payments evolve along the time-path 

given by bt = (δ-π )(1-δ+π ) t-1, implying that λs = (δ-π )(ρ+δ-π)-1.  Solution of equations 10 and 

12 shows, respectively, that Δ = δ(ρ+δ-π) -1 and Λ =  α [ρ – (1-τ)i](ρ+δ-π)-1).  Substitute Δ and 

Λ into equation 9, simplify, and obtain the Hall-Jorgenson user cost (equation 1) containing 

the weighted average cost of capital (equation 2).12 

 The Hall-Jorgenson user cost specification is valid only under unduly restrictive 

conditions.  Equation 9 introduces a generalized specification that accommodates, for the 

marginal investment in real capital, any time-path of capacity depreciation and any financial 

 
11 Simplification results in the Hall-Jorgenson user cost with δ=1, plus an extra cross-product term: π(ρ - r)(1+ρ)-
1, with r per equation 2.  This trivial term (about 10 basis points with plausible settings) vanishes by modeling 
with the conceptually equivalent approach of discounting the real loan payment with the real equity financing 
rate.  I use the modeling in the text because the loan payment schedule and tax policies typically stipulate 
nominal cash flows.  This comment also applies to the second special case in the subsequent paragraph. 
12 James Miles and John Ezzell (1980, pp. 728-729) establish a similar finding in a more restrictive setting: “That 
the textbook WACC [‘weighted average cost of capital’ per equation 2] yields correct valuations for either a 
single-period project or a project with level, perpetual cash flows is a consequence, not of project life per se, as 
has been argued in the literature, but rather of maintaining indirectly a constant leverage ratio.”  The paragraph 
in the text explains the WACC is correct when the perpetual cash flow changes along any geometric time-path, 
even a level one. 
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structure.  Sections III, IV, and V analyze the general specification to glean insight on the 

term structure that capital values embody. 

III.  Relation Between Term Structure and Loan Type 

 The equilibrium user cost of capital equals the value marginal product of capital.  The 

value marginal product is a function of production technology, input prices, and demand for 

the firm's product.  None of these factors is affected by the capital structure of the firm; 

customers possess preferences about the price and quality of the product, not about the 

producer's leverage ratio [Joseph Stiglitz (1974)].  Due to the irrelevancy of financial 

structure, the user costs of capital for levered and unlevered producers must be equal. 

 The generalized user cost specification in equation 9 simplifies for the unlevered producer 

as follows: 

(14) 
)Δ(1)τ(1

)Zτ-)(1π(ρq
c

u
ss

u
sss

u
ss

s 


  , 

where ρu represents the unlevered equity financing rate.  The terms Zu and Δu are as defined 

previously except that the relevant discount rate now is ρu.  Dynamic processes within the 

economy likely render ρu exogenous to any single producer who, by necessity, is a rate-taker 

as well as price-taker.13  The generalized user cost for the levered producer in equation 9 

equilibrates to the unlevered user cost in equation 14.  Substitution and rearrangement of 

these two equations shows: 

(15) 
)Δ(1

)Δ)(1Zτ)(1π(ρ
)ΛZτ(1πρ

u
s

s
u
sss

u
s

sssss 


 )(  . 

 
13 The rate ρu actually attaches not to the producer but to the real capital good:  “There are, therefore, 
theoretically just as many rates of interest expressed in terms of goods as there are kinds of goods diverging 
from one another in value.” [Irving Fisher (1930): p. 42]. 
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 Equation 15 is an equilibrium condition from the debt market that assures financing 

decisions for the marginal capital investment are consistent with zero net present value 

equilibrium in the real asset and equity markets.  The right-hand-side variables are largely 

exogenous and invariant to short-run production decisions.  The left-hand side variable, Λs, 

depends on financing decisions for marginal capital investments.  Λs equals zero in the 

absence of debt financing.  As reliance on debt increases then Λs increases, too.  Because 

the right-hand-side is basically constant, maintenance of equilibrium requires that ρs increase 

to offset the rising Λs.14  In other words, an increase in debt financing for the marginal capital 

investment leads to an increase in the marginal levered equity financing rate. 

 Impose on equation 15 the two special cases from Section II.  That is, impose parameters 

for either (a) the one-period model, or (b) the loan repayment schedule for the marginal 

investment that makes perpetually constant its loan-to-fundamental value ratio.  Simplification 

shows: 

(16)   










s

s
s

u
s

u
ss α1

α
iρρρ  . 

Equation 16 is Modigliani and Miller's Proposition 2 (1958) establishing that the levered equity 

financing rate is an increasing linear function of the debt-to-equity ratio. 

 The interrelation between financing rates for this special case is revealed in the total 

differential for the system.  Differentiation of equation 16 (ρu is held constant) shows: 

(17) 
  s

s

s
s2

s

s
u
s

s di
α1

α
dα

α1

iρ
dρ 














  . 

 
14 Tax depreciation deductions retain influence through the variable Z.  The levered equity financing rate 
depends, in other words, on the depreciation tax shield.  Franco Modigliani and Merton Miller (1963) argue 
analogously that the levered equity financing rate depends on the interest tax shield.  The discussion below, for 
simplicity, ignores effects of taxes on ρ. 
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A significant amount of information incorporated into equation 16 is not reflected in equation 

17.  For the Modigliani-Miller/Jorgenson models, there is no explicit association between 

changes in financing rates and debt maturity structure (bj) or capacity depreciation (dj).  The 

geometric smoothing of the debt payment stream and real asset cash flow stream leads to a 

unique situation in which real information vanishes and becomes irrelevant.  Indeed, with ρu 

fixed, the debt and equity financing rates are invariant to everything in the model except 

changes in αs , the initial loan-to-value ratio.  Debt maturity is irrelevant to equation 16 

because α, once set, remains at its initial value.  The two special cases implicitly assume that 

equilibrium financing rates are independent of term: they presume a flat yield curve. 

 Irrelevance of financial structure requires that the equilibrium user cost for the marginal 

investment is invariant to financing source.  The special cases leading to equation 16 are 

interesting but overly restrictive and misleading.  Equation 15, on the other hand, implies a 

more generally useful determinate relationship between interest rates for different loan 

payment streams – it also implies a term structure of interest rates.  Extracting from the 

equilibrium condition the implied term structure of interest rates is a procedure analogous to 

several studies cited in Section II [e.g., Jorgenson and Auerbach (1980) and Hendershott 

(1981)] that extract from the user cost specification a variable besides equilibrium pre-tax 

cash flow. 

 Simple facts drive this term structure theory:  (a) capital value embodies the discounted 

sum of residual cash flows, discounted by the relevant equity financing rate, plus the loan; (b) 

the equity financing rate exceeds the debt interest rate; and (c) the user cost of capital is 

invariant to financial structure.  The facts imply that the yield curve has a natural upward 

slope because an increase in average period of debt offers a leverage benefit to equity, but 
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the benefit cannot persist and must be offset.  The pre-tax cash flow is constrained due to 

irrelevance of financial structure.  So the financing rate affordable to this zero net present 

value investment rises.  With respect to a specific unit of real capital, long-term debt requires 

a higher financing rate yet also provides a higher return on capital! 

 At equilibrium, the user cost for the marginal investment financed by, say, a 10-year 

corporate debenture equals the user cost for the investment financed by a 15-year fixed 

payment amortized loan.  Equation 15 therefore implies a determinate relationship between 

the interest rates for a 10-year corporate debenture and a 15-year fixed payment amortized 

loan.  Rates different than implied by equation 13 represent a state of disequilibrium because 

the marginal investment's net present value would be higher for some financing methods than 

others. 

 The remainder of this section analyzes for a variety of situations the equilibrium interest 

rate implied by equation 15; these endogenously derived rates are referred to as the intrinsic 

interest rates.  Section IIIA discusses the results for the standard debenture and analyzes 

comparative statics, and Section IIIB obtains analogous results for the fixed payment 

amortized loan. 

A. Term Structure for the Debenture 

 The debenture has a loan payment stream in which the borrower receives a lump sum 

from the lender, constant interest payments are made periodically throughout the life of the 

loan, and principal is repaid in toto with the last payment.  This particular debt contract 

describes most bonds traded in the U.S. corporate and Treasury credit markets. 

 Consider equation 15 for a marginal investment financed by a debenture with a face value 

of αsqs, a term of T, and a coupon rate of is (annual coupon, no sinking fund).  Equity of (1- αs 
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)qs finances the remainder of the purchase price.  The periodic interest expense for the 

debenture equals isαsqs and there is no repayment of principal until time s+T when the 

principal is repaid in toto.  The first payment, Bs,1, equals isαsqs and γs equals isαs.  The 

subsequent payments Bs,2 through Bs,T-1 are the same size as the first, so bj = 0 for j = 0,...,T-

2.  During period T the payment includes the coupon as well as the repayment of principal 

and bT-1 = - is-1.  After period T the payment drops to zero, so bT = is-1(1+is ).  Substitution into 

equation 15 shows the debt market equilibrium condition for the debenture (τ equals zero for 

this illustration): 
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 Comparative statics for equation 18 show the effect on financing rates of changes in term 

(T).  In lieu of algebraic formulations, however, numerical findings are reported given these 

parameter settings:  the expected inflation rate (π) is set to 5 percent, the unlevered equity 

cost of capital (ρu) is 12 percent, the initial loan-to-value ratio (αs ) is 30 percent; and 

productive capacity is set to decline along a 15-year double-declining-balance schedule.15  

Furthermore, an equality constraint is imposed on the incremental debt and equity risk 

premia.  That is, i and ρ satisfy equation 18 as well as: 

(19) ρ  -  ρu  = i  -  iu . 

where iu represents the risk-free interest rate and is set to 8 percent.  The equality constraint 

on the incremental risk premia stipulates that i and ρ increase by the same amount in 

 
15 Charles Hulten and Frank Wykoff (1981) provide evidence this specification characterizes capacity 

depreciation for corporate real assets.  For this setting:  dj = (2/15)(1- 2/15)( j-1) for j = 1,...,14; d15 = 1-

(d
1
+d2+…d14) and dj = 0 otherwise. 
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response to increasing loan term.16  Substitution of equation 19 into equation 18 reveals that 

as α→0 then ρ→ρu and i→iu.  As α rises above 0 disequilibrium occurs, but equilibrium is 

restored when i and ρ increase.  The equality constraint on the risk premia stipulates that i 

and ρ increase by the same amount.  iu represents the risk-free interest rate and is set to 8 

percent. 

A.1.  Debt Maturity (T) and Intrinsic Interest Rates ("Baseline Case") 

 The different interest rates listed in row 1 of Table 1 vary with the term of the 

debenture (T).  When T in equation 18 is set at one year the intrinsic interest rate is 8.24 

percent.17  When the term of the debenture is increased to two years from one, the intrinsic 

interest rate rises 23 basis points; when term increases from 25 years to 30, the intrinsic 

interest rate rises only 3 basis points.  Row 1 reveals that the intrinsic yield curve rises 

steeply at first and then flattens out; the slope of the intrinsic yield curve converges to zero. 

 The preceding implied interest rates are from a setting in which the expected inflation 

rate, the risk-free interest rate, and unlevered equity financing rate are perpetually constant at 

5, 8, and 12 percent, respectively.  Consequently, the yield curves are flat for nominal rates iu 

and ρu as well as for real rates iu-π and ρu-π.  Nonetheless, the yield curve for the nominal 

interest rate is not flat  –  it has a normal shape, rising steeply at first and then flattening out. 

 
16 The constraint assumes that a change in debt maturity causes equal increases in the incremental debt and 
equity risk premia.  The resultant “implied term structure of interest rates” is coincident with the “implied term 
structure of levered equity financing rates for different debt term.”  Probably business cycle and investor 
sentiment affects whether incremental risk premia for debt and equity are actually equal.  Regardless, the 
resultant implied term structures of debt and equity financing rates have an upward slope.  The constraint, in 
other words, is illustrative not essential. 

17 Due to the equality constraint on the risk premia, ρ is 12.24 percent (ρu is exogenously fixed at 12 percent). 
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A.2.  Initial Loan-to-Value Ratio and Intrinsic Interest Rates 

 The initial loan-to-value ratio (αs ) is changed to 40 percent, instead of the 30 percent 

used for the baseline case discussed above.  Row 2 of Table 1 reveals that both the absolute 

level and the steepness of the intrinsic yield curve increase.  The intrinsic interest rate is 8 

basis points higher than in the baseline case for a 1-year debenture, 52 basis points higher 

than baseline for a 10-year debenture, and 63 basis points higher than baseline for a 30-year 

debenture.  The intrinsic yield curve still flattens out, it just rises to the top quicker.  The 

implication is that for business environments that are unusually debt-laden, the interest rate 

yield curve is relatively steep. 

A.3.  Equity Risk Premium and Intrinsic Interest Rates 

 The unlevered equity cost of capital (ρu) is increased to 14 percent, instead of the 12 

percent used for the baseline case.  This increases the equity risk premium since the risk-free 

interest rate (iu) is unchanged at 8 percent.  Row 3 of Table 1 reveals that the effect of this 

change is to increase both the absolute level and the steepness of the intrinsic yield curve.  

The intrinsic interest rate is 15 basis points higher than baseline for a 1-year debenture, 75 

basis points higher than baseline for a 10-year debenture, and 81 basis points higher than 

baseline for a 30-year debenture.  Again, the intrinsic yield curve rises quickly and then 

flattens out.  The implication is that for business environments in which equities are perceived 

to be unusually risky, the interest rate yield curve is relatively steep. 

A.4.  Inelastic Equity Financing Rate and Intrinsic Interest Rates 

 The equality constraint on the debt and equity risk premia is removed and, instead, the 

levered equity financing rate (ρ) is exogenously fixed at a constant.  For this scenario, the 

supply of equity financing is inelastic and the source of debt financing is elastic.  Hence, due 
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to an increase in debt maturity only the interest rate (i) adjusts to re-establish equilibrium; ρ 

does not move.  Inspection of row 4 reveals that the slope of the intrinsic yield curve is very 

sensitive to the rate at which exogenous ρ is pegged.  With ρ fixed at 12 percent, for 

example, the 1-year, 5-year, and 30-year intrinsic interest rates (row 4a) are 11.83 percent, 

11.96 percent, and 11.98 percent, respectively.  With ρ fixed at 12.5 percent, however, those 

respective intrinsic interest rates (row 4b) are 4.76 percent, 10.49 percent, and 11.58 percent.  

Finally, with ρ fixed at 13 percent (row 4c) the 1-year intrinsic interest rate is -2.43 percent (a 

rebate model), the 5-year rate is 9.04 percent, and the 30-year rate is 11.14 percent.  The 

implication is that with a costly and inelastic supply of equity financing, the interest rate yield 

curve is relatively steep. 

B. Term Structure and the Fixed Payment Amortized Loan 

 This subsection solves the model for the corporation financing marginal real 

investments with a fixed payment amortized loan of term T, coupon rate i, and principal αsqs .  

The first loan payment (Bs,1) equals αsqs /PVIFAi .T , where the denominator is the present 

value interest factor for an annuity, i -1[1-(1+i)-T].  γ therefore equals αs /PVIFAi ,T .  The 

subsequent payments Bs,2 through Bs,T are the same size as the first, so bj=0 for j=0,...,T-1.  

After period T, the payments drop to zero and, according to equation 7, bT=1.0.  The λ term is 

computed by discounting the bj's as specified in equation 13, showing that λ=(1+ρ)-T.  

Simplification of the equilibrium condition between levered and unlevered user costs yields: 
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 Equation 20 is solved by using the same baseline settings as before for ρu, π, α, and 

the capacity depreciation schedule (dj).  The equality constraint for debt and equity risk 

premia from 19 also is imposed and iu is set as before.  T is fixed at an integer constant and 

the equilibrium risk premium is isolated.  Table 2 presents the estimates. 

 A 1-year loan has the same maturity structure and intrinsic interest rate regardless of 

whether the debt contract is a debenture or a fixed payment amortized loan; with the 

parameter settings discussed above the intrinsic interest rate for a 1-year loan is 8.24 

percent.  The rise in the intrinsic interest rate due to an increase in the term of the loan 

beyond one year, however, depends upon the type of debt contract.  For a 2-year fixed 

payment amortized loan the intrinsic interest rate is 12 basis points higher (8.36 percent), 

nearly half the term premium of 23 basis points required for the 2-year debenture (8.47 

percent, Table 1); at this term the intrinsic yield curve is twice as steep for the debenture as 

for the fixed payment loan. 

 The equilibrium interest rate for a 15-year fixed payment amortized loan is 9.43 

percent, about 41 basis points lower than the rate for a 15-year debenture.  The intrinsic 

interest rate is lower for the fixed payment amortized loan than for the debenture because of 

differences in the time path of the loan-to-value ratio.  Even though initially the same for 

either financing arrangement, the loan-to-value ratio declines over time at a faster rate for the 

fixed payment loan than for the debenture.  Equation 15 enables point estimates indicating 

that for 15-year loans the financial markets require an additional 41 basis points per annum 

as compensation for the incremental risk inherent with the debenture. 

 The comparative static inferences obtained for the debenture (Table 1) with respect to 

other variables in the model also are obtained for the fixed payment amortized loan and are 
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presented in Table 2.  The effects on the intrinsic interest rate of the initial loan-to-value ratio, 

equity risk premium, and the inelasticity of the equity financing rate are qualitatively the same 

for the fixed payment amortized loan and the debenture.  Hence, the inferences about the 

interest rate yield curve discussed in the previous subsection seem fairly robust to debt 

maturity structure. 

IV. Effects of Real Asset Capacity Depreciation on the Yield Curve 

 The model links the yield curve for the nominal interest rate to the characteristics of 

the underlying real assets.  Equation 15 allows point estimates of differences for intrinsic 

interest rates between long and short-life assets, or between rapidly-depreciating and slowly 

depreciating assets.  Insights are gleaned by using the model for deducing the sensitivity of 

the intrinsic interest rate to the depreciation attributes of the underlying real asset. 

A.  Effect of the Asset Service Life 

 Panel A of Table 3 lists the intrinsic yield curve when productive capacity declines 

along the 15-year double-declining-balance schedule discussed previously.  Row 1 presents 

estimates of the equilibrium interest rate when the asset is new; this is the baseline case for 

the debenture from Table 1.  Row 2 shows the financing rates when 10-years of asset life 

remain.  The estimates in rows 1 and 2 are consistent with zero net present value 

investments in real assets.  The real assets for the two cases are identical except that for row 

1 the asset is new and promises a 15-year asset cash flow stream whereas for row 2 the 

asset is 5-years old and promises a 10-year cash flow stream.  Likewise, row 3 lists the 

intrinsic interest rates for a zero net present value investment in a 10-year old asset 

promising a 5-year cash flow stream. 
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 Comparison of rows 1, 2, and 3 reveals that as the asset life shortens, the intrinsic 

yield curve rises and steepens.  For example, the interest rate on a 1-year debenture 

consistent with the zero net present value investment equilibrium is 8.24 percent for a new 

asset, 8.29 percent for a 5-year old asset, and 8.44 percent for a 10-year old asset.  If, on the 

other hand, a 5-year debenture is used for purchasing the assets, the intrinsic interest rates 

are 9.01, 9.20, and 9.77 percent, respectively.  The yield curve slope is 73 percent greater for 

the 10-year old asset than for the new asset.  The implication is that for environments 

characterized by a preponderance of short-life or old assets, the yield curve is relatively 

steep. 

B.  Effect of the Depreciation Rate 

 Alternative specifications for the capacity depreciation schedules (the dj's) are utilized 

to gauge the effect of the depreciation rate on the intrinsic yield curve.  Panel B of Table 3 

presents the intrinsic yield curves for the debenture and the fixed payment amortized loan 

when the real asset's productive capacity declines by a straight-line pattern throughout a 15-

year service life.18  Straight-line depreciation proceeds at a slower rate than double-declining-

balance.  Nonetheless, comparison of Panel B with the baseline estimates from Tables 1 and 

2 reveals that with straight-line depreciation the intrinsic yield curve is within 10 basis points 

of baseline for every term. 

 Similar results are reported in Panel C for the case in which the real asset's capacity 

depreciation schedule is decelerated even further.  These estimates reflect a 15-year one-

hoss-shay pattern (the "all or none" pattern characteristic of lightbulbs).19  The intrinsic yield 

 
18 For this situation dj=1/15 for j=1,...,15 and dj=0 otherwise. 

19 For this situation dj=1 for j=15 and dj=0 otherwise. 
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curve is slightly flatter for this decelerated capacity depreciation schedule.  In general, 

however, Panels B and C establish that the upward slope on the intrinsic yield curve is fairly 

invariant to the capacity depreciation rate of the underlying real asset. 

V.  Conclusion 

 This study explains interest rates by focusing on the zero net present value equilibrium 

condition in the market for real assets.  The analysis relies on a user cost framework that 

incorporates debt maturity structure.  Since the existence of market equilibria implies that the 

net present value of the marginal investment is independent of the financing method, the user 

costs for alternative debt contracts are equal.  The user cost specification therefore implies a 

determinate relationship between interest rates on alternative debt contracts. 

 The current study derives a specification for the user cost of capital that generalizes 

intertemporal dynamics of capacity depreciation and financial structure.  Analysis of the 

specification yields an important insight: the term structure of interest rates that capital value 

embodies has a normal upward slope.  Capital is a store of wealth.  The wealth inside the 

store equals the present value of expected future cash flows to capitalists.  The store of 

wealth depletes as times elapses and cash flows return to financing sources.  When the 

average period of the marginal debt financing stream lengthens, the burden on the store 

diminishes and capital supports a higher rate of interest.  Long-term interest rates naturally 

are higher than short-term rates, even with level inflation expectations or in the absence of 

stochastic interest rate processes and market segmentation. 

 Equilibrium interest rates for a variety of environments and debt contracts are 

estimated.  Also, the sensitivity of the estimates to parameter settings is examined.  A novel 
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insight is that capital market financing rates link to average period of the underlying debt 

contract.  As debt average period increases, so does the equilibrium interest rate. 

 Comparative static results for this equilibrium model suggest that the yield curve is 

relatively steep when: 

 - the business environment is unusually debt-laden, 

 - equities are perceived to be unusually risky, 

 - sources of equity financing are relatively costly and inelastic, and 

 - a preponderance of fixed capital is short-life or old assets. 

 Additional avenues of research are possible.  Foremost, empirical analyses should 

investigate how well the tax-augmented model explains observed interest rate yield curves 

for different types of debt contracts or for industries possessing different types of real assets.  

Next, the model presented herein assumes an exogenous and flat yield curve for the risk-free 

interest rate and for the unlevered equity cost of capital.  A general equilibrium model should 

be developed that endogenizes these core financing rates. 



 27 

References 
 
Auerbach, Alan.  “The Tax Reform Act of 1986 and the Cost of Capital.”  Journal of Economic 

Perspectives, 1987, 1, pp. 73-86. 

Auerbach, Alan and Jorgenson, Dale.  “Inflation-Proof Depreciation of Assets.”  Harvard 

Business Review, 1980, 58, pp. 113-118. 

Böhm-Bawerk, Eugen von.  The Positive Theory of Capital, 1st edition.  New York: G.E. 

Stechert and Co., 1888, translation by William Smart, 1891.   

Bradford, David.  “The Incidence and Allocation Effects of a Tax on Corporate Distributions.”  

Journal of Public Economics, 1981, 15, pp. 1-22. 

Epstein, Larry and Denny, Michael.  “Endogenous Capital Utilization in a Short Run 

Production Model: Theory and an Empirical Application.”  Journal of Econometrics, 1980, 

12, pp. 189-207. 

Feldstein, Martin.  “Inflation, Tax Rules and Investment: Some Econometric Evidence.”  

Econometrica, 1982, 50, pp. 825-862. 

Feldstein, Martin and Rothschild, Michael.  “Toward and Economic Theory of Replacement 

Investment.”  Econometrica, 1974, 42, pp. 393-423. 

Financial Accounting Standards Board.  Statement of Financial Accounting Standards No. 33: 

Financial Reporting of Changing Prices.  Stamford CT: FASB, 1979. 

Fisher, Irving.  The Theory of Interest.  New York: Macmillan and Co., 1930. 

Goolsbee, Austan.  “Investment Tax Incentives, Prices, and the Supply of Capital Goods.”  

National Bureau of Economic Research, Working Paper 6192, September 1997. 

Gravelle, Jane.  "Effects of the 1981 Depreciation Revisions on the Taxation of Income from 

Business Capital." National Tax Journal, 1982, 35, pp. 1-20. 



 28 

Hall, Robert.  “Tax Treatment of Depreciation, Capital Gains and Interest in an Inflationary 

Economy,” in Charles Hulten, ed., Depreciation, Inflation, and the Taxation of Income from 

Capital.   Washington: The Urban Institute Press, 1981, pp. 149-166. 

Hall, Robert and Jorgenson, Dale.  “Tax Policy and Investment Behavior.”  American 

Economic Review, 1967, 57, pp. 391-414. 

Hendershott, Patric H.  “The Decline in Aggregate Share Values: Taxation, Valuation Errors, 

Risk, and Profitability.”  American Economic Review, 1981, 71, pp. 909-922. 

Hicks, John R.  Value and Capital.  London: Oxford University Press, 1939. 

Hulten, Charles and Wykoff, Frank.  “The Measurement of Economic Depreciation,” in 

Charles Hulten, ed., Depreciation, Inflation, and the Taxation of Income from Capital.   

Washington: The Urban Institute Press, 1981, pp. 81-125. 

Jorgenson, Dale W.  “Capital Theory and Investment Behavior.”  American Economic 

Review, 1963, 53, pp. 247-259. 

Jorgenson, Dale W.  “The Theory of Investment Behavior,” in R. Ferber, ed., The 

Determinants of Investment Behavior.  New York: Columbia University Press for the 

National Bureau of Economic Research, 1967, pp. 129-156. 

Jorgenson, Dale W. and Yun, Kun-Young.  Tax Reform and the Cost of Capital.  Oxford 

University Press, 1991. 

Jorgenson, Dale W. and Landau, Ralph.  Tax Reform and the Cost of Capital, An 

International Comparison.  Washington: The Brookings Institution, 1993. 

Keynes, John M.  The General Theory of Employment, Interest, and Money.  London:  

Macmillan and Co., 1936. 



 29 

Kim, Moshe and Moore, Giora.  “Economic vs. Accounting Depreciation.”  Journal of 

Accounting and Economics, 1988, 10, pp. 111-125. 

King, Mervyn and Fullerton, Don.  The Taxation of Income from Capital.  University of 

Chicago Press, 1984. 

Miles, James A. and Ezzell, John R.  “The Weighted Average Cost of Capital, Perfect Capital 

Markets, and Project Life: A Clarification.”  Journal of Financial and Quantitative Analysis, 

1980, 15, pp. 719-730. 

Modigliani, Franco and Miller, Merton.  “The Cost of Capital, Corporation Finance and the 

Theory of Investment.”  American Economic Review, 1958, 48, pp. 261-297. 

Modigliani, Franco and Miller, Merton.  “Taxes and the Cost of Capital: A Correction.”  

American Economic Review, 1963, 53, pp. 443-453. 

Myers, Stewart.  “Interactions of Corporate Financing and Investment Decisions: Implications 

for Capital Budgeting.” Journal of Finance, 1974, 29, pp. 1-25. 

Sinn, Hans-Werner.  “Taxation and the Cost of Capital,” in David Bradford, ed., Tax Policy 

and the Economy.   Cambridge: MIT Press, 1991, pp. 25-54. 

Stiglitz, Joseph.  “On the Irrelevance of Corporate Financial Policy.”  American Economic 

Review, 1974, 64, pp. 851-866. 

U.S. Department of Commerce, Bureau of Economic Analysis.  Fixed Reproducible Tangible 

Wealth in the United States, 1925-85.  Washington: USGPO, 1987. 

U.S. Department of Labor, Bureau of Labor Statistics.  Capital Stock Estimates for Input-

Output Industries: Methods and Data, Bulletin 2034.  Washington: USGPO, 1979. 

Vasicek, Oldrich A. “An Equilibrium Characterization of the Term Structure.”  Journal of 

Financial Economics, 1977. 



 30 

TABLE 1:  Intrinsic interest rates for debentures of varying term 

Term of the Loan (years) 
1 2 3 4 5 10 15 20 25 30 

1.  Baseline case 
8.24 8.47 8.67 8.85 9.01 9.56 9.84 9.98 10.06 10.09 

2.  Increase loan-to-value ratio to 40% from 30% 
8.32 8.63 8.90 9.14 9.36 10.08 10.44 10.61 10.70 10.74 

3.  Increase unlevered equity risk premium to 6% from 4% 
8.39 8.74 9.05 9.32 9.56 10.31 10.65 10.80 10.87 10.90 

4.  Set the levered equity financing rate at a constant 

       4a:  at 12.0% 
11.83 11.91 11.94 11.95 11.96 11.98 11.98 11.98 11.98 11.98 

       4b:  at 12.5% 
4.76 8.23 9.49 10.12 10.49 11.20 11.42 11.51 11.55 11.58 

       4c:  at 13.0% 
-2.42 4.64 7.09 8.31 9.04 10.43 10.84 11.02 11.10 11.14 

 

Notes: 
The stipulated changes are not cumulative; baseline conditions are reset for every case. 
In all cases productive capacity depreciates along a 15-year double-declining-balance 

schedule. 
The interest rate (i) and equity financing rate (ρ) are endogenously derived from equation 15. 
The exogenous baseline settings include: 
 ρu = .12, unlevered equity cost of capital 
 α = .30,  proportion of the investment financed by debt 
 π = .05,  expected inflation rate 
 iu = .08,  risk-free interest rate 



 

TABLE 2:  Intrinsic interest rates for fixed payment loans of varying term 

Term of the Loan (years) 
1 2 3 4 5 10 15 20 25 30 

1.  Baseline case 
8.24 8.36 8.47 8.58 8.68 9.11 9.43 9.66 9.82 9.93 

2.  Increase loan-to-value ratio to 40% from 30% 
8.32 8.48 8.63 8.78 8.91 9.49 9.92 10.22 10.42 10.55 

3.  Increase unlevered equity risk premium to 6% from 4% 
8.39 8.57 8.74 8.91 9.06 9.69 10.13 10.42 10.61 10.73 

4.  Set the levered equity financing rate at a constant 

       4a:  at 12.0% 
11.83 11.88 11.91 11.93 11.94 11.97 11.97 11.98 11.98 11.98 

       4b:  at 12.5% 
4.76 6.97 8.25 9.02 9.54 10.70 11.11 11.32 11.43 11.50 

       4c:  at 13.0% 
-2.42 -.01 4.60 6.11 7.12 9.41 10.23 10.62 10.85 10.98 

 

Notes: 
The stipulated changes are not cumulative; baseline conditions are reset for every case. 
In all cases productive capacity depreciates along a 15-year double-declining-balance 

schedule. 
The interest rate (i) and equity financing rate (ρ) are endogenously derived from 

equation 15. 
The exogenous baseline settings include: 
 ρu = .12, unlevered equity cost of capital 
 α = .30,  proportion of the investment financed by debt 
 π = .05,  expected inflation rate 
 iu = .08,  risk-free interest rate 



 

TABLE 3:  Effects of capacity depreciation on the intrinsic interest rates 

Term of the Loan (years) 
1 2 3 4 5 10 15 20 25 30 

PANEL A: Real productive capacity depreciates along a 
 15-year double-declining-balance schedule 

1.  Debenture loans when the asset is new (baseline case) 
8.24 8.47 8.67 8.85 9.01 9.56 9.84 9.98 10.06 10.09 

2.  Debenture loans when 10-years of asset life remain 
8.29 8.56 8.80 9.01 9.20 9.83 10.15 10.31 10.38 10.42 

3.  Debenture loans when 5-years of asset life remain 
8.44 8.84 9.20 9.51 9.77 10.66 11.07 11.27 11.36 11.40 

 
PANEL B:  Real productive capacity depreciates along a 

 15-year straight-line schedule 

4.  Debenture loans when the asset is new 
8.23 8.44 8.63 8.81 8.96 9.48 9.75 9.89 9.96 9.99 

5.  Fixed payment amortized loan when the asset is new 
8.23 8.34 8.44 8.55 8.64 9.05 9.36 9.58 9.73 9.83 

 
PANEL C:  Real productive capacity depreciates along a 

 15-year one-hoss-shay schedule 

6.  Debenture loans when the asset is new 
8.16 8.31 8.45 8.57 8.68 9.07 9.27 9.38 9.44 9.47 

7.  Fixed payment amortized loan when the asset is new 
8.16 8.24 8.31 8.39 8.45 8.75 8.97 9.14 9.25 9.33 

 
 

Notes: 
The stipulated changes are not cumulative; baseline conditions are reset for every 

case. 
The interest rate (i) and equity financing rate (ρ) are endogenously derived from 

equation 15. 
The exogenous baseline settings include: 
 ρu = .12, unlevered equity cost of capital 
 α = .30,  proportion of the investment financed by debt 
 π = .05,  expected inflation rate 
 iu = .08,  risk-free interest rate 
 


